Topic 7 -Subspaces of IR"

Def: Let
$$\vec{V}_1, \vec{V}_2, ..., \vec{V}_r$$
 be linearly
independent vectors in \mathbb{R}^n .
The set of all vectors spanned
by $\vec{V}_{i,1}, \vec{V}_{2,1}, ..., \vec{V}_r$ is called a subspace
of \mathbb{R}^n . It is called the span
of the vectors $\vec{V}_{1,1}, \vec{V}_{2,1}, ..., \vec{V}_r$ and written

$$span(\vec{v}_{1},\vec{v}_{2}), \vec{v}_{r})$$

$$= \begin{cases} c_{1}\vec{v}_{1} + c_{2}\vec{v}_{2} + \dots + c_{r} \vec{v}_{r} \mid c_{1}, c_{2}, \dots, c_{r} \text{ can be} \end{cases}$$

$$Le + W = span(\vec{v}_{1}, \vec{v}_{2}, \dots, \vec{v}_{r})$$

$$We \text{ say that the dimension of W is r
and we write dim(W) = r.$$

$$If \ \beta = [\vec{v}_{1}, \vec{v}_{2}, \dots, \vec{v}_{r}] \text{ then we}$$

$$call \ \beta \ a \ basis for W.$$

Ex: In
$$\mathbb{R}^2$$
 let $\vec{v} = \langle z, 3 \rangle$.
Since \vec{v} is a single non-zero vector,
We get that $\{\vec{v}\}\]$ is a lin. ind. set.
The subspace spanned by \vec{v} is
 $W = \text{span}(\vec{v}) = \{ z, \vec{v} \mid c_i \text{ is any real number}\}$
This subspace consists
of all multiples of \vec{v} .
For example,
 $1 \cdot \vec{v} = \vec{v} = \langle z, 3 \rangle$
 $-1 \cdot \vec{v} = -\vec{v} = \langle -z, -3 \rangle$
 $\frac{2}{3}\vec{v} = \langle \frac{w}{3}, 2 \rangle$
are all examples
of vectors in W.
Here dim(W)=1
Since $B = [\vec{v}]$
is a basis for W with one vector.

Ex: Consider the vector space
$$\mathbb{R}^2$$
.
Let $\vec{i} = \langle 1, 0 \rangle$, $\vec{j} = \langle 0, 1 \rangle$.
We know already that $\mathcal{B} = [\vec{i}, \vec{j}]$
is a basis for all of \mathbb{R}^2
and that every vector $\vec{v} = \langle a, b \rangle$
in \mathbb{R}^2 is in span (\vec{i}, \vec{j}) since
 $\vec{v} = \langle a, b \rangle = \langle a, 0 \rangle + \langle 0, b \rangle$
 $= a \langle 1, 0 \rangle + b \langle 0, 1 \rangle$
 $= a \vec{i} + b \vec{j}$
Thus, span $(\vec{i}, \vec{j}) = [\mathbb{R}^2$.
So, \mathbb{R}^2 is a 2-dimensional
subspace of itself.
 \mathbb{R}^2 $\vec{b} \vec{j} - \vec{v} = a \vec{i} + b \vec{j}$

There is a special case of subspace
that our first def of subspace
misses. It is the subspace
$$\Xi \vec{\sigma}$$
?
that has no basis.
Def: Let $W = \{\vec{\sigma}, \vec{\sigma}\}$ in \mathbb{R}^n .
Even though W has no basis
we define W to be a subspace
of \mathbb{R}^n . We call W the
trivial subspace of \mathbb{R}^n . We define
the dimension of W to be 0.
Ex: $W = \{\vec{\sigma}\}$ in \mathbb{R}^2
 \mathbb{R}^2 W $\dim(W) = 0$

Kinds of subspaces in IR²

dimension	basis of m lin. ind. vectors	picture of the span of the basis	description
0	there is no basis		{ i}
	$\vec{\vee}_{i}$		a line through the origin
2	V_{1} V_{2}	IR ² Vi Vi	all of IR ²

Kinds of subspaces of IR3

dimension	basis of m lin. ind. vectors	picture uf the span of the basis	description
0	there is no busis	x k y	203
	J V		a line through the origin
2	ند V ₍₎ V ₂		a plane through the origin
3	V_{1} V_{2} V_{3}	$\frac{2}{v_{2}} \frac{R^{3}}{v_{1}}$ $\frac{1}{v_{1}}$ $\frac{1}{v_{2}}$ $\frac{1}{v_{3}}$	all of IR ³

We can't draw a picture of subspaces of Rⁿ when n = 4 but it's the same idea. They are "linear" spaces that pass through the origin. There is another way to make subspaces of Rⁿ.

Homogeneous subspace theorem
Let W consist of all the vectors

$$\vec{v} = \langle x_1 \rangle x_2 \rangle \dots \rangle x_n \rangle$$
 that satisfy
a homogeneous system of linear equations
 $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = 0$
 $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = 0$
 \vdots
 $a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = 0$
 \vdots
 \vdots
 $a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = 0$
Then W is a subspace of \mathbb{R}^n
Conversely, if W is a subspace of \mathbb{R}^n
then there exists a homogeneous system
of linear equations that W is the
solution space to.

Ex: Consider the vector space
$$\mathbb{R}^3$$
.
Let $W = \left\{ (x,y,z) \mid z=0 \right\}$
By the homogenous subspace
theorem, W will be a
subspace of \mathbb{R}^3 .
Let's find a basis for W .
Pick a vector
 $\vec{v} = (x,y,z)$
from W .
Then by the def of W , we know $z=0$
So,
 $\vec{v} = (x,y,0)$
 $= (x,0,0) + (y,0)$
 $= (x,0,0) + (y,0)$
 $= x \le 1,0,0) + (y < 0,1,0)$
 $= x \le 1,0,0) + (y < 0,1,0)$
 $z = (x,0,0) + (y < 0,1,0)$
 $z = (x,0,0) + (y < 0,1,0)$
 $= x \le 1,0,0) + (y < 0,1,0)$
 $z = (x,0,0) + (y < 0,1,0)$

Let's show that
$$\vec{z}_{1}\vec{j}$$
 are lin. ind.
If $c_1\vec{x}+c_2\vec{j}=\vec{0}$ then
 $c_1 < 1, o_1 o \} + c_2 < o_1 1, o \} = < o_1 o_1 v ?$
Thus,
 $< c_{1}, c_{2}, o \} = < o_1 o_1 v ?$
So, $c_1 = o_1 c_2 = o_1$
Since the unly solution to $c_1\vec{x}+c_2\vec{j}=\vec{0}$
is $c_1=o_1 c_2=o_1$ we know that
 $\vec{z}_{1}\vec{j}$ are lin. ind.
Thus, $B = [\vec{z}_{1}, \vec{j}]$ is a basis
for W. So, W is
a subspace of \mathbb{R}^3
of dimension Z.

W is the xy-plane in 3 dimensions.

Ex: Show that

$$W = \{\langle x, y, z \rangle \mid x + y = 0\}$$

is a subspace of \mathbb{R}^{3} find a basis for W ,
and the dimension of W .
By the homogeneous subspace theorem, W
is a subspace of \mathbb{R}^{2} . Lets find a basis
for W .
Suppose $\overline{V} = \begin{pmatrix} x \\ z \end{pmatrix}$ is in W .
Then:
 $x + y = 0$
 $y - 5z = 0$
This system is already reduced. We have:
 $x = -y$
 $y = 5z$
 $z = t$
 $y = 5z = 5t$
 $x = -y = -5t$
Thus, if $\overline{V} = \begin{pmatrix} y \\ z \end{pmatrix}$ is in W then

$$\vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -st \\ st \\ t \end{pmatrix} = t \begin{pmatrix} -s \\ 5 \\ 1 \end{pmatrix}$$

So, W is spanned by the vector $\begin{pmatrix} -s \\ 1 \\ 1 \end{pmatrix}$
Since $\{\begin{pmatrix} -s \\ 1 \\ 1 \end{pmatrix}\}$ consists of a single non-zero vector
we know it forms a lin. ind. set.
We know it forms a lin. ind. set.
Thus, $\beta = \left[\begin{pmatrix} -s \\ 1 \\ 1 \end{pmatrix}\right]$ is a basis for W.
And dim $(W) = 1$.
W is a line in \mathbb{R}^{3} .

Theorem: The dimension of a subspace

$$W$$
 of \mathbb{R}^n is well-defined. That is,
if $V_{1,1}V_{2,1}...,V_a$ are linearly independent
with span $(V_{1,1}V_{2,1}...,V_a) = W$
and $W_{1,1}W_{2,1}...,W_b$ are linearly
independent with
span $(W_{1,1}W_{2,1}...,W_b) = W_1$
then $a = b$.
Theorem: W is a subspace of \mathbb{R}^n
if and only if
 $(1 \ 0 \ is in W$
 (2) If $W_{1,1}W_{2}$ is in W_1
 (3) If W is in W and
 X is a scalar in \mathbb{R}^n
then dW is in W